
Fusion of Features with Neural Networks for Prediction of Secondary
Neurological Outcome After Cardiac Arrest

Philip Hempel1, Philip Zaschke1, Miriam Goldammer2,∗, Nicolai Spicher1,∗

1 Department of Medical Informatics, University Medical Center Göttingen,
Georg August University of Göttingen, Germany

2 Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine,
Technische Universität Dresden, Dresden, Germany

∗ shared senior authorship

Abstract

As contribution to the 2023 George B. Moody chal-
lenge, we – team “BrAInstorm” – aimed for fusing se-
mantic features based on medical knowledge with an end-
to-end residual neural network to predict the secondary
neurological outcome after successful resuscitation. More
precisely, we fused numerical (e.g. age) and categorical
(e.g. gender) information as well as features extracted
from biosignals: We extracted absolute and relative power
bands, coupling, and coherence from standard electroen-
cephalography (EEG) frequency bands. To investigate the
interplay between heart and brain, we computed deceler-
ation capacity (DC) from electrocardiograms (ECGs). In
contrast to these semantic features, we adapted a residual
neural network based on agnostic features which are de-
rived from the training data. The network architecture was
originally developed for classification of ECGs and was
adjusted to the challenge EEG data. The best metric scores
were reached using only the neural network, demonstrat-
ing the complexity of outcome prediction and effectiveness
of end-to-end methods. We received a challenge score of
0.57±0.15 during 5-fold cross validation on training data
and 0.448 on the hidden validation data. On the hidden
test data we received a final score of 0.68 (rank 8 of 36).

1. Introduction

Cardiac arrests are defined by a sudden stop of the
heart’s mechanical activity. A primary good outcome is
reached if the heart starts beating again whereas the sec-
ondary neurological outcome is assessed a few months
later. In the period of unconsciousness during the first
hours after the event, the treating clinicians estimates neu-
rological outcome prospectively. The assessment has two
aims: (1) mitigation of the financial burden on healthcare
system, and (2) facilitation of informed decision making

for patients and relatives.
To contribute scientific evidence for this complex prob-

lem, we used the rich dataset [1] of this year’s George
B Moody challenge [2, 3] for automatic prediction of bi-
nary outcome (good vs. poor). An additional task is to
predict values following the Cerebral Performance Cat-
egory (CPC) scale which is ordinal and ranging from 1
(good neurological function and independent for activities
of daily living) to 5 (dead).

2. Methods

As shown in Tab. 1, three different types of data are pro-
cessed, namely numerical, categorical, and timeseries data.
Fig. 1 depicts the proposed pipeline and how the input data
is combined for outcome prediction. The final output of the
network is either good (CPC: 1, 2) or poor outcome (CPC:
3, 4, 5).

In our pipeline, the provided data is separated with re-
spect to their structure to serve as input layer: Timeseries
data (EEG, ECG) is processed by semantic feature extrac-
tion and an end-to-end neural network (1D-ResNet) with
the extracted features both serving as input for an long
short-term memory (LSTM) network. This timeseries in-
formation is subsequently combined with numerical and
categorical data in a dense layer for outcome prediction.
Our processing pipeline, developed in Python, is freely
available.

Table 1. Data processed within the proposed pipeline.
Timeseries Numerical Categorical
1D-ResNet DC, BBDC, DCsgn Gender

EEG features Age Hospital
ROSC OHCA

Shockable Rhythm
TTM
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Figure 1. Proposed pipeline combining timeseries, numer-
ical and categorical data.

The majority of the numerical and categorical data is
provided within the dataset of the challenge and are there-
fore loaded directly from files. For the provided biosignals,
we provide a preprocessing module described in section
2.1. We describe the modules for EEG feature extraction,
the residual network, and DC computed from ECG in sec-
tions 2.2, 2.3, 2.4, respectively.

2.1. EEG Preprocessing

Preprocessing includes several typical steps, namely
channels reorganization, bandpassfiltering, removal of
non-physiological values, downsampling, bipolar re-
referencing and scaling.

To maintain a consistent channel order across different
recordings, the EEG channels are reordered according to a
predefined list of 19 channels, excluding ‘F9’, ‘Fpz’, and
‘Oz’ as they were not consistently present in all record-
ings. Subsequently, a bandpass filter restricts the signal
between 0.5 and 45Hz using a Butterworth filter design.
In addition, non-physiological values ±200 mV are set to
zero to avoid noisy EEG recordings disturbing the sub-
sequent scaling. Since the provided EEGs have different
sampling frequencies, they are downsampled to 100Hz.
For that task, scipy’s resample poly and resample func-
tions are used.

A bipolar re-referencing is applied to denoise the raw 19
EEG channels by subtracting them from nasion to inion,
resulting in 18 channels. This sagittal montage aims to
minimize EEG differences due to lateralization in contrast
to a coronal montage [4].

For signal scaling, we aimed to extract the most recent
60min EEG recording from each patient. However, due to
memory constraints, only data from 300 patients could be
used to apply sklearn’s robust scaler to remove the median
of all EEG recordings and to scale the data according to the
quantile range. Both, raw EEG and the bipolar montage
are separately scaled for further processing.

2.2. Residual Neural Network

Our residual neural network is based on an open
source 1D-ResNet architecture adjusted for ECG classi-

fication [5]. We adopted and hyperparameter-tuned this
network using RandomSearch and tensorflow library.

We adapt the 1D-ResNet to the EEG by changing the
input layer from 12 to 18 channels and using 4 x 40 s seg-
ments of the bipolar EEG montage as input. The segments
are chosen based on two heuristically-defined criteria: (1)
a variance closest to the median variance of the entire EEG
data, and (2) the lowest kurtosis among segments meeting
the first condition.

For standalone evaluation of 1D-ResNet only, the pre-
diction outcome is determined primarily based on a median
threshold above 0.6 for poor outcome. Additionally, if ex-
treme values below 0.1 or above 0.95 are in the prediction
array, the outcome is considered as good or poor, respec-
tively, and the median threshold is not considered. This
approach gives more weight to extreme predictions, poten-
tially recognizing more certain outcomes over the median-
based determination.

2.3. Semantic EEG Features

EEG features proposed by neurosurgeons to investigate
the changes in a dying human brain [6] are implemented
as semantic features for outcome prediction. Frequency
bands of interest are adapted from sleep research and de-
fined as delta (0.5− 4Hz) for deep sleep, theta (4− 8Hz)
for drowsiness, alpha (8 − 12Hz) for relaxed states, beta
(12 − 30Hz) for alertness, and gamma (30 − 45Hz) for
cognitive processing. All present data is segmented in non-
overlapping segments of 300 s duration to calculate abso-
lute and relative power bands, phase-amplitude coupling
and coherence for all segments and frequency bands. In
case of missing data, the results are zeropadded to obtain
arrays of the same length for each recording.

Each power band represents the signal power within a
certain frequency band. Absolute power refers to the total
power within that band and relative power is determined
by calculating the proportion of the absolute power within
that band to the total power across all frequency bands,
thus providing insights into the dominant frequency bands
[7]. Phase-amplitude coupling (PAC) represents the func-
tional integration between distinct brain regions. Coher-
ence measures the linear correlation between signals mea-
sured at two EEG electrodes in the frequency domains to
assess their functional connectivity.

Power bands are calculated on the bipolar montage us-
ing the welch function provided by scipy. PAC and coher-
ence are calculated using the raw signal analogously to the
sagital electrode setting for re-referencing of the bipolar
montage. The hilbert function provided by scipy is used
for 5 different PAC variants including delta-theta, theta-
alpha, alpha-beta, beta-gamma and alpha-gamma. The co-
herence is determined using the function coherence pro-
vided by scipy.
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2.4. Deceleration Capacity

DC is a measure for the ability of the autonomous ner-
vous system to control the cardiac frequency and load [8].
It is derived from the heart rate variability and was shown
to correlate with mortality in different intensive care set-
tings [8–10]. Therefore, it is used to include the neuro-
cardiac linkage into our pipeline. We implement three dif-
ferent methods to calculate DC using the ECG lead with
the highest number of detected inter-beat intervals (IBIs).

For calculating IBIs, the whole ECG is first filtered us-
ing the function ecg clean provided by neurokit2 [11], fol-
lowed by R-peak detection using neurokit2’s ecg peaks
function. From the R-peaks, heart rate (HR) is estimated
by counting the beats-per-minute (bpm). Using a lower
threshold of 50 bpm, signal segments with an acceptable
signal quality are detected. If HR is below 50 bpm, the
ECG processing is performed again with recordings of 1
hour length instead of taking the entire length. Subse-
quently, IBIs are calculated using numpy’s diff function.

Next to the original DC algorithm [8], two approaches
addressing noisy data [12] are added to the pipeline,
namely beat to beat deceleration capacity (BBDC) [12] and
deceleration capacity sign (DCsgn) [12]. They are adopted
due to the rather low signal-to-noise ratio of the challenge
ECGs.

The key idea of DC is to detect all IBIs in which the
heart is in the process of deceleration, removing all IBIs
which are not in a physiological range (more than 5% dif-
ference w.r.t the previous IBIs). Subsequently, potentially
overlapping segments are defined for all IBIs meeting this
criteria. The original DC approach calculates segments of
length 4 and filters only the first 2 for physiological bound-
aries, whereas BBDC does this for all 4 and DCsgn takes
only segments of length 2. Finally, the different DC val-
ues can be calculated as the average of the slopes of the
regression lines fitted to heart rate deceleration sequences,
defined by the segments, representing the heart’s ability to
slow down over time.

3. Results

For the prediction of secondary neurological outcome
after cardiac arrest, we – team BrAInstorm – aimed for a
fusion of semantic and handcrafted ECG and EEG features
with a 1D-ResNet neural network. Our challenge score
using both training and validation data for the individual
approaches can be seen in Tab. 2.

Our first approach (‘1D-ResNet only’) did not make use
of fusion but only applied the end-to-end classifier. Our
second approach (‘Pipeline w/o’) is based on the pipeline
depicted in Fig. 1 but without the 1D-ResNet. We used
5-fold cross validation for evaluation on the public train-
ing set. Unfortunately, due to issues with memory during

Table 2. Results and ranks for our two approaches: True
positive rate at a false positive rate of 0.05 (the official
challenge score).

Approach Training Val. Test Rank
1D-ResNet only 0.57± 0.15 0.45 0.68 8/36
Pipeline w/o NN 0.24± 0.12 0.22

training and validation, we were unable to score the full
combined pipeline shown in Fig. 1. Hence, the final chal-
lenge score and the rank for the test data are present for the
1D-ResNet only. However, our validation results clearly
show that the 1D-ResNet outperforms the pipeline based
on only semantic features and categorical and numerical
values.

Additionally, we compared the performance of differ-
ent DC methods, since it is a promising feature for mor-
tality prediction in similar settings, e.g. after myocardial
infarction [8], mitral valve repair [9], or acute ischemic
stroke [10]. However, the resulting differences between
good vs. poor outcome were too small and therefore of
limited use in our experiments. We also compared the re-
sulting values of the semantic EEG features such as power
bands, coherence, and coupling and observed that there
were visible difference but only for a rather small amount
of patients.

4. Discussion and Conclusion

Our results indicate that the adoption of a 1D-ResNet
for ECG classification for secondary outcome prediction
based on EEG signals in an end-to-end approach worked
well. We did not perform an in-depth optimization of hy-
perparameters, just some small adjustments and best prac-
tices.

Manually analyzing the results for the EEG features
showed that the “classic” semantic EEG features show a
solid basis for prediction of secondary neurological out-
come after cardiac arrest. This could be similar to clinical
practice where certain EEG patterns like low voltages or
continuous signals, which appear in a minority of patients,
can also be used for predictions with high confidence [13].

Interestingly, despite their promising results in myocar-
dial infarction [8], mitral-valve repair [9] or acute ischemic
stroke [10], the ECG-derived DCs showed no potential for
statistical differentiation between patient groups. A possi-
ble explanation could be that the thorax compressions dur-
ing resuscitation elicit in intense traumatic contusion of the
myocardium, which could have a large impact on DC.

Moreover, we did not observe a drop in model perfor-
mance when applied to the test data, which contains data
from a hospital that was not present in the training data.
This highlights the ability of the 1D-ResNet to learn ag-
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nostic features which generalize well and minimize over-
fitting. However, classic approaches still have the advan-
tage of providing transparent medical insights in contrast
to the “black-box” predictions by neural networks. These
can be explained [14], but only to a smaller extend, there-
fore limiting their translation to clinical practice.

Summing up, an end-to-end-classifier (1D-ResNet)
which was adapted from an open-source neural network
classifier [5] showed the best results for our team, and
outperformed semantic features. This is in line with sev-
eral current recent publications reporting on the excel-
lent performance of neural networks in different medical
fields. Our results demonstrate the effectiveness of the
1D-ResNet and its capability to generalize even to another
biosignal.

Code Availability

The code contributed to the challenge is available at:
https://gitlab.gwdg.de/medinfpub/biosi
gnal-processing-group/georgebmoodycha
llenge2023_brainstrom.git
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